Skip to content

%% derivative %%

Product Rule

Tags
Calculus
Cegep/1
Word count
170 words
Reading time
2 minutes

Let f and g be two differentiable functions, then

ddx(f(x)g(x))=f(x)g(x)+g(x)f(x)

The rule extends to >2 functions:

ddx(f(x)g(x)h(x))=f(x)g(x)h(x)+g(x)f(x)h(x)+h(x)f(x)g(x)

Proof

Let p(x)=f(x)g(x), then

ddx(f(x)g(x))=p(x)=limh0p(x+h)p(x)h=limh0f(x+h)g(x+h)f(x)g(x)h=limh0f(x+h)g(x+h)f(x+h)g(x)+f(x+h)g(x)f(x)g(x)h=limh0f(x+h)(g(x+h)g(x))+g(x)(f(x+h)f(x))h=limh0(f(x+h)(g(x+h)g(x))h+g(x)(f(x+h)f(x))h)=limh0f(x+h)(g(x+h)g(x))h+limh0g(x)(f(x+h)f(x))h=limh0f(x+h)limh0g(x+h)g(x)h+g(x)limh0f(x+h)f(x)h=f(x)g(x)+g(x)f(x)

Contributors

Changelog